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TEM Impedance and Cross Coupling for Small
Circular Center Conductors in a Double
Ridged Waveguide®

J. E. STORERT, SENIOR MEMBER, IRE, AND T. W. THOMPSONY, STUDENT MEMBER, IRE

Summary—The even and odd mode TEM impedances and cross-
coupling coefficient were found for two small circular center con-
ductors in a double ridge waveguide structure. Expressions were
found by the use of a variational approximation for the case where
the centers of the circular conductors lie on the horizontal center line
of the guide; the conductors were placed symmetrically about the
vertical plane of symmetry of the guide, and the conductors were
placed a reasonable distance from the guide and from the region be-
tween the ridges. Results calculated from these expressions agree
reasonably well with experimental data.

The experimental and theoretical results tend to indicate that
proper placement of the two conductors in a double ridge guide could
be used as a method of transmitting three different messages inside
a single closed waveguide.

INTRODUCTION AND Basic EQUATIONS

ITH the problems of conserving weight and

&;&/ space in today’s aircraft and missiles, the use of
one waveguide for several different transmission
systems would be advantageous. Suppose we consider
the waveguide system shown in Fig. 1. By launching
TEM modes on conductors C; and C. and using the
dominant waveguide mode, this system could transmit
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Fig. 1—Cross section of a waveguide system of two small circular
center conductors inside a double ridge waveguide.
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three different messages instead of the one message for
the usual application of the ridged guide. For ideal con-
ductors (conductivity = «) and no discontinuities in the
guiding structures, there will be no coupling between
the TE waveguide mode and the TEM modes. If the
cross coupling between the TEM modes on Cy and Cs is
small and the mode conversion due to discontinuities
and imperfect conductors is small, this system would
be a practical method of using one waveguide for three
communication channels. This article will consider only
the TEM even and odd mode impedances and the cross
coupling between C; and C, for the case where the con-
ductors C; and C, satisfy the requirements mentioned
in the summary.

Basic Equations

The electric and magnetic field of the TEM modes of
the system shown in Fig. 1 lie entirely in the transverse
plane and are given by the following expressions:

E = Re[—¢/®ma0Vg(x, y)], (1a)
1
H=—(a. X E), (1b)
7
where
E = electric field vector,
H = magnetic field vector,
a g
vV = a; — + ay —
dx dy
and

Re ¢it%#—«% = time and space variation of a wave travel-
ling in the positive Z direction with a
velocity w/k.

The unit vectors in the x, v, and z directions will be
noted by a,, ay, and a., respectively. The quantity 7 is
the characteristic impedance of uniform plane waves in
the dielectric which fills the guide.

n:/@/g7

(1c)

where

p=permeability of the dielectric filling the guide,
e=dielectric constant of the dielectric filling the guide.
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Also, the potential function ¢(x, y) satisfies the two-
dimensional Laplacian equation,

2 2

ad
V%@A0=<——+

St s =0 Q)

y?

The current in the center conductors will be given by
i. It will be assumed that the current distribution varies
angularly over the surface of the conductor. Thus,

i = Re [er¢==eD](g)]a,,

where 6 is shown in Fig. 1.
The impedance of one wire to ground will be defined

as
wall
f E-ds
conductor

7= (3)

i-dA4
conductor
surface

ds = dxa. + dyay,

where

dA = pdba,.

The coupling coefficient will be given by C and will be
defined as

c-2= (4)
——Ze_Zo

The superscripts ¢ and o denote the even and odd modes,
respectively. If no superscript appears, then the equa-
tion will be considered to be applicable to either mode
(with suitable modifications). For the even mode, at
any transverse plane, conductors Cy and C; will be raised
to the same potential with respect to the outer con-
ductor. The current flow in C; and C; will be equal and
in the same direction. For the odd mode, at any trans-
verse plane, conductors €7 and C, will be raised to oppo-
site potentials. The resulting current flow in C; and C,
will be equal in magnitude and opposite in direction.
The coupling coefficient defined by (4) has been dis-
cussed in previous articles!? for balanced transmission
systems—thus the requirement that conductors be
placed symmetrically about the vertical plane of sym-
metry.

Let us consider the region to the right of the vertical
plane of symmetry as shown in Fig. 2. The origin of
cartesian co-ordinate system will be taken as the center
of the aperture. It is easily shown that potential func-
tion ¢(x, ¥) must satisfy the following boundary condi-
tions:

1 B. M. Oliver, “Directional electromagnetic couplers,” Proc.
IRE, vol. 42, pp. 1686-1692; November, 1954.

2 E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-transmission-
line filters and directional couplers,” IRE Traxs. oN MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, pp. 75-81; April, 1956.
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[¢(x, v)]c, = potential on the center conductor surface
=7V, (5a)

[¢(x, ¥)]c = potential on all conductor surfaces other
than Cy = 0, (Sb)

dopc(x, )7 .
Ef( @J -0, (50
ax /2

[¢°(x, ¥) ] ec1)o = 0. (5d)

WAVEGUIDE
MIDPLANE

y=

.
N
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2
¥:0
L}
2

x:% x=0 X7b X=d

Fig. 2—Cartesian co-ordinate system in the transverse plane
with the origin (0, 0) at center of the aperture.

Letting n, denote a unit inwardly directed normal to the
conductor surface and the subscript C; denote the value
of the quantities at the surface of Ci, we can write the
following boundary condition for the magnetic field at
the surface of Ci:

iCI = —n, X HC'I-

Using (1a) and (1b) and noting that the transverse cur-
rent distribution is dependent only upon 8, it can easily
be shown from the above that

]@:’i[f‘“%yqumm' (5¢)

7 7,

It is readily apparent that this problem is not easily
solved considering the differential equations. However,
by considering an admittance 1 defined as 1/Z and
replacing the differential equations by integral equa-
tions and using a variational approximation, expressions
for Z and C can be found. Thus, considering ¥, we have

t_1 f " 10)pdt
— = P
z vy

1 2”[8¢(x,y)] ,
— e pdo.
V07] 0 a”z z,y on O}

The expression for the coupling coefficient now becomes

If

I

(6a)

Yo — I’e
C = : (6b)
Y{) + Ife
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ForMuLATION OF THE INTEGRAL EQUATIONS

Let us consider a region 1 to be the rectangular area
enclosed by the lines

For this region, a Green’s function can be defined such
that

(7a)
(7b)

V2G1(x7 X0, Y, 3’0) = - 6(96 - X0, Yy — 3’0)7

G, = 0 on all boundaries of Region 1.
The function Gy can be thought of as the two-dimen-
sional potential for a negative line charge located at
%0, Yo inside a conductor having the same boundaries

as Region 1. The delta function in (7a) has the prop-
erty

[ s 3906 = w1,y — sy

f(xo, ¥o) if the area integrated over includes
= 4 the point wx, yo; zero if the area integrated

over does not include the point g, yo.

A solution to (7a) and (7b) in terms of a Fourier series
expansion in y is

>

(3]

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

March
ff [GiV2¢ — ¢V2Gy)dxdy
Region 17

dp G,
= f G—— ¢ dl,
boundary of Region 1’ an in

where the partial derivatives are with respect to an out-
wardly directed normal at the boundaries. The integrals
above are reduced, noting the boundary conditions on
¢ and G; at the surface indicated. Thus,

al2 aG]_ 27
sieo) = [ 00|22 vt [ Gt
—a/2 ox =0 0
27 aGl
[T o
Jo an
where
Y(y) = ¢(0,9) for —a/2 <y < + a/2.

The last term in the expression above can be shown to
be zero by the use of Green’s second identity. Thus, for

Region 1,
al? aGl
I

¢ (£X‘0, ) =
' 7 —a/2 0x 1 s—o

. f (G d@pds.  (7d)

y Yo\ . X<\ d— X
cos (an ~> cosl a, — }sinh | ¢, — }sinh | ¢, ————
h h h h

Gl(x7 Yo, ¥, yO) =

n=0

where

Gn=2n+m,
X< is the lesser of x, xo,
X~ is the greater of x, xo.

Let Region 1’ be Region 1 excluding the center con-
ductor cross section. If xq, yo is supposed to lie in Region
1’ then

$1(wo, y0) = ff [G1V2¢ — ¢V?G1]dxdy.
Region 1/

The above integral can be reduced from an area integral
to line integral over the boundary by the use of Green’s
second identity. Thus

. ( d
a, sinh { a, —>
h

Turn now to a Region 2 which will be that area bounded
by the lines x=—1/2, x=0, y=+a/2, and y=—a/2.
For this region we will define a second Green’s function
such that

V2Ga(x, %0, 3, ¥o) = — 8(x — %o, ¥ — o)
Gy =0 for y = + a/2, (—1/2<x<0)
for x = 0, (—a/2<Ly< +4a/2)
aG,*
—6—x—=Gg"=O fora = —1/2, (—a/2<y<+a/2),

where now %, ¥, is supposed to lie somewhere in Region
2. Writing G» as a Fourier series expansion
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L xe]
— 4+ X< i
y yo . .| 2 ] : A~
cos | a, —]cos{a,—}sinh tan ————— J sinh { a, —
> a a a a
Gy = — 2 E ] - (8a)
= @, sinh <an ~>
2a
L4 x<]
R __I__ AY< N
(00 5) s (o ) o o= faion [ )
cos | @, — ) cos| a,— )cosh|a, — | sinh { a, —
i a a a a
Gyt = — 2 l ) ; (8b)
- @, cosh (an ~>
2a
where X<, and X~ are those defined for Gi. By consider- +2 o
ing an analysis similar to that done for Region 1, it is Y= 70 1(6)pd?
easily shown that
al? 0G, - — [(G1) e, 2,p0 -0, T ()T (00) p2d0d0,
e I T veds J,
—a /2 ox
2 27 af2 d
- f f |- Goa|  10wtrpindy
By demanding that ¢ reduce to 177y on the conductor Vitdo  J a2 ldxo =0
surface and that 0¢:i/0xs and d¢ps/dxe be equal across 9 /0G EYe.
. . . 1 2
the aperture (xp=0),> we obtain the following integral [ < + *) ]
equations 77V0 —aj2 v —ay2 (')Ko dx dx =0 rg=0
V(¥ (yo)dydyo. (11a)

Vo = nf I: lim (G1)01:| I(B)pda
0 20,50 Cy

o roG
+ m[ ] dy

Py (10a)
"

a

I a
0=n [ [- <Gl>01] 1@)0ds
0 dxg 2g=0

al2 0 oG, 0Gy
+ ¥ () [ lim — <— + —) ]dy. (10b)

/2 zp—0 (996() ax ox

These equations are sufficiently complicated to ex-
clude an explicit expression for I(#). However, an ex-
pression for 17 can be found which is stationary with
respect to ¥(v) and 7(f) and a variational principle can
be applied using this expression.

VARIATIONAL APPROXIMATION

Using (6a), (10a), and (10b) together with the sym-
metry properties of the Green’s function, it can be
shown that ¥ can be written as

8 It should be noted that ¢; and ¢. given by (7d) and (9) satisfy
the boundary conditions given by (5b), (5¢) and (5d).

This expression can be shown to be stationary with re-
spect to independent variations of 7(f) and ¥(y). To
study an amplitude invariant form, let

10 = 2 &

mp
Y(y) = $o¥(y).

The expression for ¥ given by (11a) becomes

21y _ 1y? 210 ¥o?
Y= ER_T’U 11 — oorg-‘— ‘ FQQ, (llb)
VU V02 Vo?' 7]VO2
where
— 1 0}{(6)
B 2w b
1 27 27
Iy = — f f [(GV) ey legmy-c K () K (85)d8db,, (11c)
dr?J o 0

L= f f_,,,iﬁ (Gocl]xrome)wyo)dedyo, (1)

al2 o279 /3Gy 0Ge
Fzzzf f —\—+
—ased a2 L dxo \ QX 0%/ 2o zp—0

W (y)¥ (yo)dydys.

(11e)
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The values of I, and, can be found by setting 0V /41,
and 8 Y/, equal to zero. The resulting values of o, ¥
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Using the above-mentioned trial functions, the ex-
pressions for R, 'y, I, T'ss, become R=1.

d— 2b
eg—eld/nk) — cosh <an P >

—1 ™ id

Ty = — — )+ 13a
" <2h> {:0 . ( d> ’ (132)

@, sinh { a, —

h

. d— b\ . a

N sinh <an T) sin? { a, E)
T = 16 (~> > : (13b)
a =0 d
@,* sinh (an ~>
h
N h? AN a
—l[tanh <an ——):\ + (—) coth <an —> sin* { a, —>
i 2a a* h 4k
Iy = — 128 > ; ; (13¢)
n=0 ay
and Y are where a¢,=(2n+1)7.
VR s,
Iy= ———————> (12a) For the even mode, I'=T"¢= +1.
n(Cule — I'ie?) For the odd mode, I'=T°= —1,
VoRT:2

Yo = TF : T ) ’ (12b) The above series converges quickly. The evaluation of
- 11_ w2 T'1; is shown in the Appendix. The evaluation of I'y; and
_ _1_ (R)*T'22 (120) I';» was simplified by the fact that Gy is essentially a

Z  q(Tulee — T1?)

For most accurate results, the potential and current
distributions should be studied experimentally and some
analytic function picked to represent these distributions.
However, in other problems of this sort, a uniform cur-
rent distribution is usually chosen and good results ob-
tained. This then will be our choice. We cannot say
much about the potential distribution except

D ¥ =0aty=+a/2,
2) Y(y) is symmetrical about y=0,
3) ¥(v) is maximum at y=0.

Note that conditions 2) and 3) presuppose that the
circular conductors lie midway between the top and
bottom of the ridge guide. A potential function satisfy-
ing the above conditions is the triangular form,

2
Uiy =1-——|9].
a

This form is easy to handle mathematically and yielded
good results. Thus the trial functions should suffice as
long as the following conditions are met:

1) The aperture is not too large,

2) The distance from every point on the boundary of
Region 1 to the conductor is at least equal to the
conductor radius, and

3) The aperture is not a dominant influence on the
current distribution.

potential function and its average over conductor sur-
face is its value at center of the conductor (x =5, ¥y=0).

From the expressions for ¥? and Yv, direct computa-
tion of the coupling coefficient from (6b) would be dith-
cult and the values found probably erroneous. However,
an expression for the difference (12— Y*) can be found
and the coupling coefficient found using the second form
of (6a).

EvarLuaTioN oF MopE COUPLING

For the waveguide system shown in Fig. 1 to be used
as a three-channel communication system, we would use
the dominant waveguide mode and the TEM modes
associated with conductors €y and (.. The waveguide
mode will be operated in a frequency range such that all
waveguide modes except the dominant mode are below
cutoff (if the center conductors are small and located
away from the region between the ridges, the change in
cutoff frequency of the dominant waveguide mode is
less than 10 per cent*). Under ideal conditions, the TE
and TEM are considered orthogonal® and thus they will
propagate independently. For an actual system, there

+ Both experimental and theoretical results carried out by the
authors and James D. Kellett under Contract No. AF 19(604)-5474,
AIQIF Cambridge Res. Ctr., Air Res. and Dev. Command, Bedford,

ass.

5 See for example, N. Maruuvitz, “Waveguide Handbook,” in
“M.I.T. Radiation Laboratory Series,” McGraw-Hill Book Co.,
Inc., New York, N. Y., vol. 10; 1951. See especially Sec. 1.2.
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will be discontinuities and asymmetries resulting in
mode conversion. This conversion is difficult to handle
mathematically and this paper will be concerned only
with the coupling between the TEM modes for ideal
conductors as given by (4) and (6b). Thus, the coupling
considered in this section is only that between the TEM
modes.
Let us consider the following integral

ff [¢ev2¢o _ ¢0V2¢e]dxdy.
region 1’4-region 2

It is readily apparent that the above integral is identi-
cally equal to zero. However, by the use of Green's
second identity, the above integral reduces to

2m d? (9 e
Ozf [(ﬁe ¢ _¢oi:‘ pd@
0 on; dn.de,

al2 3¢° dpe
+ I:—¢>e + ¢° :| dy.
—a /2 ax ox r=1,2

By the use of (5a), (S¢), and (6a) it is easily shown

that
1 al? ad)o
———“,_f |:¢>e ] dy.
7V Vo®J _asa % o1

Substituting the form of ¢ given by (9), the previous
equation yields

I/'o_Ye:

4 (\‘ a,
Ve—YVe=—3 % _ 1
7a? 2o Lsmh (an —>

a

al2 e
74l )]
—aj2 17e a
2 e (y) y
X [fk”/z —VUT cos (an ;) dy]} .

The above series converges very quickly so that only
the first term need be considered. Thus,

64
I'o — Ye o~ [
. 71
pwd sinh <—>
a
Tie 0
X |——].
Fl]F‘lQ - F12
Since the quantity (¥°— Y¢) will be a very small quan-

tity, the sum (¥°+ ¥*) can be replaced by some average
value 27. This is calculated using (12¢) and replacing

Fgg by Fzz Where
h? d and
4+ ( > coth <an ~> sin® ( )
a? h Y

3
an

I'ia :r
TiiTas — T'po?

(14)
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Replacing T'ys¢ and Ty by Ta in (14), the following ex-
pression for C is obtained:

32
Yo — Ve n® [ TS

C= = = — } (15)
Vo4 Ve L . <7r1> Too(Ty1 ey — T'10%)
sinh { —
a

REesvuLTs

Calculations for a ridged guide having the dimensions
given in Table I were made. The characteristic imped-
ance of either wire is given by Z¢=+/Z°Z¢.1* Since Z°
and Z¢ are very near, Z¢ was calculated from (12c), re-
placing T's; by Ts. For most dielectrics, the permeability
is near that of space, and the dielectric constant is given
by

e = €e,
where

€ =relative dielectric constant,
eo=dielectric constant of free space.

Thus, 7 given by (1c) becomes 1/+/€¢ 120w ohms. The
quantity Ze¢+/¢ is given by
J— NP
Zeve = 120m | Ty — —=— ) ohms, (16)
22

The coupling coefficient was calculated using (15).

TABLE 1

DimENsIONs oF TyPE DR-19 DOUBLE RIDGE WAVEGUIDE
MANUFACTURED BY TECHNICRAFT [LABORATORIES
oF T'HoMASTON, CONN.

Dimension l Length in Inches
a | 0.191
h 0.475
d 0.3845
i 0.256

Since we are considering the TEM mode, the imped-
ance given by (3) will be proportional to the dc resist-
ance of a two-dimensional configuration having dimen-
sions proportional to those of the actual ridged guide.®
This is to be expected since the potential for this two-
dimensional configuration satisfies the same Laplacian
equation and same boundary conditions as ¢(x, v). The
even and odd mode impedances were found and their
average taken as Zg¢+/¢. These values are shown in
Fig. 3 along with the values of Z¢+/%¢ calculated from
(16).

§ J. D. Kraus, “Electromagnetic,” McGraw-Hill Book Co., Inc.,
New York, N. Y.; 1953. See especially Sec. 11.5.
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THEORETICAL

1040 EXPERIMENTAL o
140
* °
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Fig. 3—Experimental and theoretical results for a double
ridge guide having the dimensions given in Table 1.

2 DIMENS!ONAL CONFIGURATION

Fig. 4—Two-dimensional configuration used in finding the experi-
mental results. The cross-hatched regions denote a highly conduct-
ing region. The experimental results shown in Figs. 3 and 5 were
found with an electrolytic tank set-up based on the above.

Also the coupling coefficient, given by (4), can be
found experimentally in a similar manner. It can be
shown that

Ze— Z° I
C = =
VAR VAL

- )

-2
14

where I1, I, and 17 are shown in Fig. 4 for the case when
Ri=Ry;=R. The coupling coefficient found experi-
mentally by this method is shown in Fig. 5 along with
the theoretical calculated using (13).

As can be seen from Fig. 3 and 3, there is reasonable
agreement between the theoretical and experimental re-
sults. Both the theoretical and experimental results indi-
cate that this sort of system could be used as system for
transmitting three messages inside a single closed guide.
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Fig. 5—Experimental and theoretical results for a double
ridge guide having the dimensions given in Table 1.

The characteristic impedances are reasonable and the
coupling data indicates that for all practical purposes,
the only cross talk between channels would result from
mode conversion due to discontinuities.

APPENDIX
Evaluation of T'y

For the uniform current distribution, I'y given by
(11c) becomes

1 2 21
Pu = —f f [(Gl)cl]zoyyogcldgdeo.
dr2d o Jo

The average of Gy over the surface (i is the value of Gy
at (b, 0). Thus, I'i; becomes

17

1 27
I‘11 = —f [(Gl)z=b,y=0]xo,yoa01d00- (18)
2r Jo

The Green’s function in the above integral can be con-
sidered as the sum of {ree space Green’s functions for the
charge at xo, ¥o and all of the images of the charge. The
free space Green's function for a charge located at x,,
Yo is

Gn = — Il =)+ = she (9)
Thus, G1 becomes
G1(w, %0, ¥, ¥o) = — El;ln [(v — %0)? 4 (v — yo)?]172
+ > Gre. (20)

all images of zg,yp



1961 Storer and Thompson: Small

Substituting the above in (18),

1, -1 .
Iy = ~—f ——1In [p? cos? § + p? sin? §]1/240
27r 0 27[‘

T

The first term is readily available. The second term is
evaluated by replacing the integral by the field at the
center. Thus,

2 (21)

all images 0f 5,0

1
+ — Gfs] do.

27 J g

b
sinh <a,l ~—> sinh (a,,
h
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-1

Yig

2

all images of 6,0

(GIS) zb- (22)

y -0

T'n Inp +

The second term in the above is evaluated using (20)
where x=>b-+e¢e and limit is taken as e approaches rero.
Therefore,

lim

0

-1 1
P11=_1np+ [Gl(b—i—eybyO)O:)—i—_—lne]'
2w 2T )

G is given by (7¢). Thus,

_1 ©
= —Inp -+ Iim ZZ

271' e—0 n=0

11

a, sinh <

d

)

1

ap —

d—b
. e (d/h) — cogh <an ; >
— o0 /A
= —1Inp+ 2,
27 70 ) d
@, sinh <an —>

h

0 g‘“n(f/h) 1 — 1

—|—lim|jz—— ——lne}:—

e—0 n=0 a,, 277' 271'

d— 2b
e~ (Ih) _ cosh <an —*>

h

)
h

a, sinh (am




