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TEM Impedance and Cross Coupling for Small

Circular Center Conductors in a Double

Ridged Waveguide*

J. E. STORER~, SENIOR MEMBER, IRE, AND T. W. THOMPSONf, STUDENT MEMBER, IRE

Summary—The even and odd mode TEM impedances and cross-

coupling coefficient were found for two small circular center con-

ductors in a double ridge waveguide structure. Expressions were

found by the use of a variational approximation for the case where

the centers of the circular conductors lie on the horizontal center line

of the guide; the conductors were placed symmetricrdly about the

verticaf plane of symmetry of the guide, and the conductors were

placed a reasonable distance from the guide and from the region be-

tween the ridges. Results calculated from these expressions agree

reasonably well with experimental data.

The experimental and theoretical results tend to indicate that

proper placement of the two conductors in a double ridge guide could
be used as a method of transmitting three different messages inside
a single closed waveguide.

INTRODUCTION AND BASIC EQUATIONS

w

ITH the problems of conserving weight and

space in today’s aircraft and missiles, the use of

one waveguide for several different transmission

systems would be advantageous. Suppose we consider

the waveguide system shown in Fig. 1. By launching

TEM modes on conductors Cl and C, and using the

dominant waveguide mode, this system could transmit
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Fig. l—Cross section of a waveguide system of two small circular
center conductors inside a double ridge waveguide.
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three different messages instead of the one message for

the usual application of the ridged guide. For ideal con-

ductors (conductivity = ~ ) and no discontinuities in the

guiding structures, there will be no coupling between

the TE waveguide mode and the TEM modes. If the

cross coupling between the TEM modes on Cl and Cz is

small and the mode conversion due to discontinuities

and imperfect conductors is small, this system would

be a practical method of using one waveguide for three

communication channels. This article will consider only

the TEM even and odd mode impedances and the cross

coupling between Cl and CZ for the case where the con-

ductors Cl and Cz satisfy the requirements mentioned

in the summary.

Basic Epations

The electric and magnetic field of the TEM modes of

the system shown in Fig. 1 lie entirely in the transverse

plane and are given by the following expressions:

E = Re [–e’(’z-ut)v~(x, y)], (la)

E7=:(aZX E), (lb)
7

where

E = electric field vector,

II = magnetic field vector,

8 8
V=a. —+ag —>

dx ay

and

Re ei@-W ‘j = time and space variation of a wave travel-

ing in the positive Z direction with a

velocity w/k.

The unit vectors in the x, y, and z directions will be

noted by aZ, au, and az, respectively. The quantity q is

the characteristic impedance of uniform plane waves in

the dielectric which fills the guide.

(lC)

where

p= permeability of the dielectric filling the guide,

6 = dielectric constant of the dielectric filling the guide.
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.Mso, the potential function 4(x,

dimensional Laplacian equation,

and Thompson:

y) satisfies the

““(xy’=(s+i+”y’‘“

Small

two-

(2)

The current in the center conductors will be given by

i. It will be assumed that the current distribution varies

angularly over the surface of the conductor. Thus,

i = Re [e~t~;–ot)~(d)]a.,

where 0 is shown in Fig. 1.

The impedance of one wire to ground will be defined

as

swall

E.ds
conduct. r

z = ————— ,

f

i.d.4
cundu cto r
sur f...

(3)

where

The coupling

defined as

ds = dxa~ i- dya~,

d.4 = pdOa,.

coefficient will be given by C and will be

z’ – z“
c=—

ze_~”
(4)

The superscripts e and o denote the even and odd modes,

respectively. If no superscript appears, then the equa-

tion will be considered to be applicable to either mode

(with suitable modifications). For the even mode, at

any transverse plane, conductors Cl and CZ will be raised

to the same potential with respect to the outer con-

ductor. The current flow in C, and C, will be equal and

in the same direction, For the odd mode, at any trans-

verse plane, conductors Cl and Cz will be raised to oppo-

site potentials. The resulting current flow in Cl and Cz

will be equal in magnitude and opposite in direction.

The coupling coefficient defined by (4) has been dis-

cussed in previous articles 1,2 for balanced transmission

systems—thus the requirement that conductors be

placed symmetrically about the vertical plane of sym-

metry.

Let us consider the region to the right of the vertical

plane of symmetry as shown in Fig. 2. The origin of

cartesian co-ordinate system will be taken as the center

of the aperture. It is easily shown that potential func-

tion @(x, y) must satisfy the following boundary condi-

tions:

1 B. M. Oliver, “Directional electromagnetic couplers, ” PROC.
IRE, vol. 42, pp. 1686–1 692; November, 1954.

2 E. M. T. Jones and J. T. Bolljahn, “Coup led-strip-transmission-
line filters and directional couplers, ” IRE TRANS. ON MICROW.iVE
THEORY AND TECHNIQUES, vol. NITT-4, pp. 75-81; April, 1956.
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[4(%Y)lc, =

—

[4(% Y)lc =

potential on the center conductor surface

v, (5a]

potential on all conductor surfaces other

than Cl = O,

[!!!!$]z=_L,2=o,

[@”($, y)].=-,,, = o.

(5b)

(SC)

(Sal)

Fig. 2—Cartesiwr co-ordinate system in the trww.verse plane ~
with the ol-igin (O, 0) at center of the aperture.

Letting n, denote a unit inwardly directed normal to the

conductor surface and the subscript Cl denote the value

of the quantities at the surface of Cl, we can write the

following boundary condition for the magnetic fielc{ at

the surface of Cl:

icl = — n, x Hc,.

tTsing ( la) and (lb) and noting that the transverse cur-

rent distribution is dependent only upon O, it can easily

be shown from the above that

It is readily apparent that this problem is not easily

solved considering the differential equations. However,

by considering an admittance F defined as l/Z and

replacing the differential equations by integral equa-

tions and using a variational approximation, expressions

for Z and C can be found. Thus, considering Y, we have

The expression for the coupling coefficient now becomes

V~ — Ire
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FORMULATION OF THE INTEGRAL EQUATIONS

Let us consider a region 1 to be the rectangular area

enclosed by the lines

X=o, x=d, y=~, y––h.
2 2

For this region, a Green’s function can be defined such

that

V2G1(X, xO, y, yo) = – ~(~ – ~0, y – ye), (7a)

GI = O on all boundaries of Region 1. (7b)

Ss [G,V2~ – ~V2G,]dxdy
Region If

——s [ 1
G,d:–4: di,

boundary of Region It

where the partial derivatives are with respect to an out-

wardly directed normal at the boundaries. The integrals

above are reduced, noting the boundary conditions on

@ and GI at the surface indicated. Thus,

The function G1 can be thought of as the two-dimen- 2“ dGl

sional potential for a negative line charge located at
– Vo

[[1
~ CI pdO,

● O
Xo, y. inside a conductor having the same boundaries

as Region 1. The delta function in (7a) has the prop- where

erty
+(y) = 0(0, y) for –a/2 < y S + a/2.

Ssj(2, y)t(~ – ~o, y – yo)duiy The last term in the expression above can be shown to

be zero by the use of Green’s second identity. Thus, for

ff(xo, YO)if theareaintegrated over includes Region 1,

I= the point *o, yO; zero if the area integrated

over does not include the point *o, yo.

A solution to (7a) and (7b) in terms of a Fourier series

expansion in y is

/8 ‘T

+ T?jo (@zu-c,~(o)Pd$. (7d)

—-

Cos(an+)cos(an:)sinh(an?)sinh(and-h”x’)
G,(x, :KO,y,Yo) =2 ii —>

n=o ()d
a. sinh a% —

h

(7C)

where

an= (2?z+l)7r,

X< is the lesser of x, XO,

X> is the greater of x, XO,

Let Region 1’ be Region 1 excluding the center con-

ductor cross section. If xO, y~ is supposed to lie in Region

1’ then

#Jl(*o, yo) =
Ss

[GIV20 – $V2G,]d.xdy.
Re~ion 1’

The above integral can be reduced from an area integral

to line integral over the boundary by the use of Green’s

second identity. Thus

Turn now to a Region 2 which will be that area bounded

by the lines x= –1/2, x=O, y= +a/2, and y= –a/2.

For this region we will define a second Green’s function

such that

V2G2(K, %,, y, yo) = – 8(3 – %0, y – yo)

G’=0 for y = + a/2, (–1/2S*50)

for * = O, (–a/2 <y< + a/2)

dG”
—— . GZO= O forx = –1/2, (–a/2 ~ y< + a/2),

ax

where now xO, yo is supposed to lie somewhere in Region

2. Writing GZ as a Fourier series expansion
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(8a)

c“s(a+)c”s(a?)c”sh’2+’++3
G,e=–25—

,,=0

>

()

1
a,, cosh a,, —

2a

(8b)

where X<, and X> are those defined for G1. By consider-

ing an analysis similar to that done for Region 1, it is

easily shown that

By demanding that 41 reduce to 170 on the conductor

surface and that d@l/6’xO and d@.JdxO be equal across

the aperture (xO = O),3 we obtain the following integral
-;7J::J::[+r:+2),=J.o=o

equations

WY)IWO)~Y~YO. (1M

This expression can be shown to be stationary with re-

spect to independent variations of 1(6) and ~(y). To

study an amplitude invariant form, let

(lOa)

1(0) = : K(o),

*(Y) = 40~(Y) .

The expression for ~“ given by (1 la) becc,mes
1

h
Vo=q H 1

lim (GJcI 1(fl)Pd6
o Xo,vo+cl

These equations are sufficiently complicated to ex-

clude an explicit expression for 1(0). However, an ex-

pression for 1’ can be found which is stationary with

respect to ~(y) and 1(0) and a variational principle can

be applied using this expression.

where

1

-s

2T

K(8)d0,
2T o

1 2X--ss27T
[(GI)r,]ZO,VO.> ClK(0)K(OO)dOdOO,

47r~ o ,
rll ~ llC)

VARIATIONAL APPROXIMATION

Using (6a), (lOa), and (lOb) together with the sym-

metry properties of the Green’s function, it can be

shown that Y can be written as

3 It should be noted that +1 and +2 given b]- (7d) and (9) satisfy
the boundary conditions given by (5 b), (5c) and (5d). V(y) ’l(y(l)dydyo. (he)
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The values of 10 and ~o can be found by setting d Y/dI’o Using the above-mentioned trial functions, the ex-

and c?Y/d~o equal to zero. The resulting values of 10, IJO pressions for R, Tn, T12, T22, become R = 1.
—

–1 () ‘-”(’’”h)-cosh(an?)
rll = ~ In : +5–-

.=O d’

()
a. sinh an —

h

()r12=16~ 5
a n=O

‘in’(an%sin’(aria
—,

() d
an2 sinh an —

‘I’a”’(”L)T+i:)co’h( ”:)sin’(”n:)
r,, = – 128 ~ ——————

?,=0

and Y are

voi?rzz
IO=— >

~(r11r22 – rlf)

vol?rlz
to . ____

(r,,’ – rir,z) ‘

(12a)

(12b)

(7?)vs,2
Y=+= —— . (12C)

~(rllrzz — rlzz)

For most accurate results, the potential and current

distributions should be studied experimentally and some

analytic function picked to represent these distributions.

However, in other problems of this sort, a uniform cur-

rent distribution is usually chosen and good results ob-

tained. This then will be our choice. We cannot say

much about the potential distribution except

1) IJ(y)=O at y= -la/2,

2) ~(y) is symmetrical about y = O,

3) ~(y) is maximum at y= O.

Note that conditions 2) and 3) presuppose that the

circular conductors lie midway between the top and

bottom of the ridge guide. A potential function satisfy-

ing the above conditions is the triangular form,

W(y)=l–:lyl.

This form is easy to handle mathematically and yielded

good results. Thus the trial functions should suffice as

long as the following conditions are met:

1)

2)

3)

The aperture is not too large,

The distance from every point on the boundary of

Region 1 to the conductor is at least equal to the

conductor radius, and

The aperture is not a dominant influence on the

current distribution.

where an= (2ti+l)T.

For the even mode, r =re= +1.

For the odd mode, 17=1’0= –1.

(13sl)

(13b)

(13’)

The above series converges quickly. The evaluation of

r,, is shown in the Appendix. The evaluation of rll and

I’IZ was simplified by the fact that G1 is essentially’ a

potential function and its average over conductor sur-

face is its value at center of the conductor (x= b, y= O).

From the expressions for V and Y“, direct computat-

ion of the coupling coefficient from (6b) would be diffi-

cult and the values found probably erroneous. However,

an expression for the difference ( Y“ — Y’) can be found

and the coupling coefficient found using the second form

of (6a).

EVALUATION OF MODE COUPLING

For the waveguide system shown in Fig. 1 to be used

as a three-channel communication system, we would use

the dominant waveguide mode and the TEM modes

associated with conductors Cl and Cz. The waveguide

mode will be operated in a frequency range such that all

waveguide modes except the dominant mode are below

cutoff (if the center conductors are small and located

away from the region between the ridges, the change in

cutoff frequency of the dominant waveguide mode is

less than 10 per cent’). Under ideal conditions, the TE

and TEM are considered orthogonal and thus they will

propagate independently. For an actual system, there

i Both experimental and theoretical results carried out by the
authors and James D. Kellett under Contract No. AF 19(604)-5474,
AF Cambridge Res. Ctr., Air Res. and Dev. Command, Bedford,
Mass.

s See for example, N. Maruuvit~, “Waveguide Handbook, ” in
“M.I.T. Radiation Laboratory Series, ” McGraw-Hill Book Co.,
Inc., New York, N. Y., vol. 10; 1951. See especially Sec. 1.2.
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will be discontinuities and asymmetries resulting in

mode conversion. This conversion is difficult to handle

mathematically and this paper will be concerned only

with the coupling between the TEM modes for ideal

conductors as given by (4) and (6 b). Thus, the coupling

considered in this section is only that between the TENI

modes.

Let us consider the following integral

SSre~ionl+,..,..,[4’V24”–~“v’~e]dxdy.
It is readily apparent that the above integral is identi-

cally equal to zero. However, by the use of Green’s

second identity, the above integral reduces to

a/2

H
.+ _4e~++oE

1
dy.

—r,/ 2 .’ dx .Z=-2,2

By the use of (5a), (5c), and (6a) it is easily shown

that

Substituting the form of @ given by (9), the previous

equation yields

[salz 4.(Y)

x
--cos(ar?)”l_a,2 1’0’

x
;: ?+cos(anw[f

The above series converges very quickly so that only

the first term need be considered. Thus,

64

[ 1

r12 e
1’” – Y’ = —

()

7rl r11r22 — r12~
~iT3sinh —

a

[

rlz

1

0

x ——
rl, r22 — r12 “

(14)

Since the quantity ( 1’0– W) will be a very small quan-

tity, the sum ( P + V) can be replaced by some average

value 27. This is calculated using (12c) and replacing

17zz by ~~~ where

‘+(:)co’h(an:)sin’(z).
~,, = – 128 ~ ———

I?(=O a,,3

Circular Center Conductors

Replacing 17# and r~~o by ~ZZ

pression for C is obtained:

r:l

’121

in (14), the following ex-

RESULTS

Calculations for a ridged guide having the dimensions

given in Table I were made. The characteristic imped-

ance of either wire is given by ZC = ~ZOZ’.lIz Since Z“

and Z“ are very near, Zc was calculated from (12c), re-

placing rzz by ~!z. For most dielectrics, the permeability

is near that of space, and the dielectric constant is given

by

where

e’ = relative dielectric constant,

EO= dielectric constant of free space.

Thus, q given by (lc) becomes l/@ 12’07r ohms. The

quantity ZC4~ is given by

‘cVT=120T(r1’-+:)0hm“6)
The coupling coefficient was calculated using (15).

TABLE I

DIMENSIONS OF TYI>E DR-19 DOUBLE RIDGE \VAVEGUIDE
MANCTFACTURED BY TECHNICRAFT LABOIIATORIES

OF THOMASTON, CONN.

Dimension I Length in Inches

a 0.191
—

h 0.475

d 0.3845

1 (),256

Since we are considering the TEM mode, the imped-

ance given by (3) will be proportional to the dc resist-

ance of a two-dimensional configuration having dimen-

sions proportional to those of the actual ridged guide. h

This is to be expected since the potential for this two-

dimensional configuration satisfies the Same Laplacian

equation and same boundary conditions as @(x, y). The

even and odd mode impedances were found and their

average taken as ZC@. These values are shown in

Fig. 3 along with the values of ZC@ calculated from

(16).

t J. D. Kraus, “Electromagnetic,” illcGraw-Hill Book Co., Inc.,
New York, N. Y.; 1953. See especially Sec. 11.5.
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Fig. 3—Experimental and theoretical results for a double
ridge guide hal-ing the dimensions given in Table 1.

2 DIMENSIONAL CONFIGURATION

/

Fig. 4—Two-dimensional configuration. used in finding the experi-
mental results. The cross-hatched regions denote a highly conduct-
ing region. The experimental results shown in Figs. 3 and 5 were
found with an electrolytic tank set-up based on the above.

Also the coupling coefficient, given by (4), can be

found experimentally in a similar manner. It can be

shown that

where II, IZ, and 1’ are shown in Fig. 4 for the case when

RI= Rz = R. The coupling coefficient found experi-

mentally by this method is shown in Fig. 5 along with

the theoretical calculated using (15).

As can be seen from Fig. 3 and 5, there is reasonable

agreement between the theoretical and experimental re-

sults. Both the theoretical and experimental results indi-

cate that this sort of system could be used as system for

transmitting three messages inside a single closed guide.
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Fig. 5—Experimental and theoretical results for a double
ridge guide having the dimensions gi~-en in Table I.

The characteristic impedances are reasonable and the

coupling data indicates that for all practical purposes,

the only cross talk between channels would result from

mode conversion due to discontinuities.

APPENDIX

Evaluation of ~11

For the uniform current distribution, 1711 given by

(1 lc) becomes

1 2* 27r

rll = — Ss‘w0~[(GI)c]zo,uo-cdOdOo. (17)

The average of GI over the surface Cl is the value of G,

at (b, O). Thus, rll becomes

The Green’s function in the above integral can be con-

sidered as the sum of free space Green’s functions for the

charge at xO, yo and all of the images of the charge. The

free space Green’s function for a charge located

yO is

Gf, = – ~ln [(x – x,)’ + (y – YO)’]IH.

Thus, GI becomes

G,(*, *O, y, ~0) = — ~ln [(* – XO)2 + (y – yo)z]’

+ z Gf,.
311images .f XO,IIO

at XO,

(19)

/2

(20)
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Substituting the above in (18),

Center Conductors 123

–1
I’ll=vlnp+ x (GI’.) z-b. (22)

1 sh 2iT

rll = —
z1l imagea of b,O

~~ in [p2 cosz 0 + pz sin’ O]ll’dO

U.+o

27r o The second term in the above is evaluated using (20)

2?r where x = b + e and limit is taken as e approaches zero.

+~ S[ E 1Gf, do. (21) Therefore,

2T o oll 1111.~,, of b>O

[

1

The first term is readily available. The second term is 1
I’ll=~lnp+lim Gl(b+e, b, O, O)+ Zlne .

~+0
evaluated by replacing the integral by the field at the

center. Thus, GI is given by (7c). Thus,

–1

[

.

rll=~lnp+lim 2X
c-o n=o

‘in’(an+)sinh(a%+
()d

a. sinh a,, —
)1

‘-’’’(’’”- cosh(an?)—–~lnp+fi ————
.=O d

()
a,, sinh a. —

k

[

p%(e/h)

+ lim ~ ——
.-0 ,,=0 a,, ‘N=iHal +c~~(($~~)-”

a,, —
la

.


